STOKES CONSTANTS IN TOPOLOGICAL STRING THEORY

Workshop on Mathematics of beyond all-orders phenomena, AR2W02 Isaac Newton Institute, Cambridge, UK 4 November 2022

> Claudia Rella University of Geneva

Based on arXiv:2212.10606

MOTIVATIONS AND BACKGROUND

Asymptotic, resurgent series arise naturally as perturbative expansions in quantum theories.

The machinery of resurgence uniquely associates to them a collection of complex numbers, known as **Stokes constants**, which capture information about the non-perturbative sectors of the theory.

In some remarkable cases, the Stokes constants can be interpreted in terms of **enumerative invariants** based on the counting of BPS states.

Some recent developments:

- 4d *N* = 2 supersymmetric gauge theory in the Nekrasov-Shatashvili limit of the Omegabackground
 [Grassi, Gu, Mariño, 2020]
- Complex Chern-Simons theory on the complement of a hyperbolic knot [Garoufalidis, Gu, Mariño, 2020 - 2022]
- Standard topological string theory on a Calabi-Yau threefold in the weakly-coupled regime [Gu, Mariño, 2022]

FROM TOPOLOGICAL STRINGS TO QUANTUM OPERATORS AND BACK

Let X be a toric Calabi-Yau (CY) threefold.

Local mirror symmetry pairs X with an algebraic curve Σ of genus g_{Σ} , whose quantization leads to **quantum-mechanical operators**

$$\rho_j, \quad j=1,\ldots,g_{\Sigma} ,$$

acting on $L^2(\mathbb{R})$, and conjectured to be positive-definite and of trace class, under some assumptions on the mass parameters ξ . [Grassi, Hatsuda, Mariño, 2016 - Codesido, Grassi, Mariño, 2017]

Their **Fredholm determinant** $\Xi(\kappa, \xi, \hbar)$ is an entire function of the true complex moduli κ , and its local expansion at the orbifold point $\kappa_j = 0$, that is,

$$\Xi(\kappa,\xi,\hbar) = \sum_{N_1 \ge 0} \cdots \sum_{N_{g_{\Sigma}} \ge 0} Z(\mathbf{N},\xi,\hbar) \kappa_1^{N_1} \cdots \kappa_{g_{\Sigma}}^{N_{g_{\Sigma}}},$$

defines the **fermionic spectral traces** $Z(\mathbf{N}, \xi, \hbar)$, which are analytic functions of $\hbar \in \mathbb{R}_{>0}$.

We will assume that $Z(\mathbf{N}, \xi, \hbar)$ can be analytically continued to $\hbar \in \mathbb{C} \setminus \mathbb{R}_{\leq 0}$.

From quantum operators to topological strings

The Topological Strings/Spectral Theory (TS/ST) correspondence gives

$$Z(\mathbf{N},\xi,\hbar) = \frac{1}{(2\pi i)^{g_{\Sigma}}} \int_{-i\infty}^{i\infty} d\mu_1 \cdots \int_{-i\infty}^{i\infty} d\mu_{g_{\Sigma}} \exp(J(\mu,\xi,\hbar) - \mathbf{N}\cdot\mu),$$

where the chemical potentials μ_j are defined by $\kappa_j = e^{\mu_j}$. [Hatsuda, Moriyama, Okuyama, 2013 - Grassi, Hatsuda, Mariño, 2016 - Codesido, Grassi, Mariño, 2017]

The **total grand potential** $J(\mu, \xi, \hbar)$ can be written as

$$J(\mu,\xi,\hbar) = J^{\text{WS}}(\mu,\xi,\hbar) + J^{\text{WKB}}(\mu,\xi,\hbar) \,,$$

where the worldsheet instanton grand potential J^{WS} and the WKB grand potential J^{WKB} capture the contributions from the standard and the Nekrasov-Shatashvili (NS) topological strings, respectively. [Hatsuda, Mariño, Moriyama, Okuyama, 2014]

The standard topological string coupling constant g_s is related to the quantum deformation parameter \hbar by $g_s = 4\pi^2/\hbar$ (strong-weak coupling duality).

NOTIONS FROM THE THEORY OF RESURGENCE

Let $\phi(z)$ be a resurgent Gevrey-1 asymptotic series of the form

$$\phi(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathbb{C}[[z]], \quad a_n \sim A^{-n} n! \quad n \gg 1.$$

Its **Borel resummation** is the two-step process

$$\phi(z) \quad \rightsquigarrow \quad \hat{\phi}(\zeta) = \sum_{k=0}^{\infty} \frac{a_k}{k!} \zeta^k \quad \rightsquigarrow \quad s_{\theta}(\phi)(z) = \int_{\rho_{\theta}} e^{-\zeta} \hat{\phi}(\zeta z) \, d\zeta \,,$$

where $\rho_{\theta} = e^{i\theta} \mathbb{R}_+, \theta = \arg(\zeta).$

The Borel resummation $s_{\theta}(\phi)(z)$ is a locally analytic function in the complex *z*-plane with discontinuities at

$$\arg(z) = \arg(\zeta_{\omega}),$$

where ω labels the singularities $\zeta_{\omega} \in \mathbb{C}$ of $\hat{\phi}(\zeta)$.

A ray containing one or more singularities of $\hat{\phi}(\zeta)$ is called a **Stokes ray**.

The **discontinuity** of the Borel resummation across the Stokes ray ρ_{θ} is given by

$$\operatorname{disc}_{\theta}\phi(z) = s_{\theta_{+}}(\phi)(z) - s_{\theta_{-}}(\phi)(z) = \sum_{\omega} S_{\omega} e^{-\zeta_{\omega}/z} s_{\theta_{-}}(\phi_{\omega})(z),$$

where $\theta_{\pm} = \theta \pm \epsilon$ for some small positive angle ϵ , and the sum is performed over all the singularities ζ_{ω} of $\hat{\phi}(\zeta)$ which lie on ρ_{θ} .

The **Stokes constant** $S_{\omega} \in \mathbb{C}$ and the resurgent Gevrey-1 asymptotic series $\phi_{\omega}(z)$ are encoded in the local expansion of the Borel transform at the singularity $\zeta = \zeta_{\omega}$. If ζ_{ω} is a logarithmic branch point, we have

$$\hat{\phi}(\zeta) = -\frac{S_{\omega}}{2\pi i} \log(\zeta - \zeta_{\omega}) \hat{\phi}_{\omega}(\zeta - \zeta_{\omega}) + \dots ,$$

where the dots denote regular terms in $\xi = \zeta - \zeta_{\omega}$, and $\hat{\phi}_{\omega}(\xi)$ is the Borel transform of $\phi_{\omega}(z)$.

The **Stokes automorphism** \mathfrak{S}_{θ} across ρ_{θ} is defined by $s_{\theta_{+}} = s_{\theta_{-}} \circ \mathfrak{S}_{\theta}$.

We can repeat the procedure with each of the series obtained in this way. Schematically,

$$\phi \twoheadrightarrow \{\phi_{\omega}, S_{\omega}\} \rightsquigarrow \{\phi_{\omega'}, S_{\omega\omega'}\}.$$

Each resurgent series in this process can be promoted to **basic trans-series** as

$$\Phi_{\omega}(z) = e^{-\zeta_{\omega}/z} \phi_{\omega}(z) \,.$$

The **minimal resurgent structure** associated to $\phi(z)$ is defined as the smallest subset of its basic trans-series which forms a closed system under Stokes automorphisms. We denote it by

$$\mathfrak{B}_{\phi} = \left\{ \Phi_{\omega}(z) \right\}_{\omega \in \Omega} \,.$$

Evidence suggests that a **peacock pattern** of singularities in the complex Borel plane is typical of theories controlled by a quantum curve in exponentiated variables.

TOPOLOGICAL STRINGS BEYOND PERTURBATION THEORY

[Rella, 2022]

Stokes constants and peacock patterns in topological string theory — I

In the semiclassical limit $\hbar \to 0$, the perturbative expansion of log $Z(\mathbf{N}, \hbar)$ produces a **family of asymptotic series** $\phi_{\mathbf{N}}(\hbar)$, indexed by $\mathbf{N} \in \mathbb{N}^{g_{\Sigma}}$, which I assume to be Gevrey-1 and resurgent. I denote

 $\psi_{\mathbf{N}}(\hbar) = \exp(\phi_{\mathbf{N}}(\hbar)).$

A periodic peacock configuration of Stokes rays is expected to occur in the complex Borel plane of the perturbative series $\phi_{N}(\hbar)$ for fixed N.

More precisely, there is a finite number of Gevrey-1 asymptotic series

$$\phi_{\sigma;\mathbf{N}}(\hbar), \quad \sigma \in \{0, \dots, l\},\$$

which resurge from $\phi_{\mathbf{N}}(\hbar) = \phi_{0;\mathbf{N}}(\hbar)$.

For each σ , there is an infinite family of basic trans-series

$$\Phi_{\sigma,n;\mathbf{N}}(\hbar) = \phi_{\sigma;\mathbf{N}}(\hbar) \, e^{-n\frac{A}{\hbar}}, \quad n \in \mathbb{N} \,,$$

where $A \in \mathbb{C}$ and $l \in \mathbb{N}_+$ depend on **N** and on the CY geometry.

Stokes constants and peacock patterns in topological string theory — II

The basic trans-series $\Phi_{\sigma,n;N}(\hbar)$ capture explicit non-analytic corrections in \hbar , which describe **additional, hidden sectors** of the topological string.

They lead to a minimal resurgent structure of the form

$$\mathfrak{B}_{\phi_{\mathbf{N}}} = \{\Phi_{\sigma,n;\mathbf{N}}(\hbar)\}_{\sigma=0,\ldots,l,\,n\in\mathbb{N}},$$

and to infinitely-many Stokes constants

$$S_{\sigma\sigma',n;\mathbf{N}}, \quad \sigma, \sigma' = 0, \dots, l\,, \quad n \in \mathbb{N}\,,$$

which I conjecture to be rational numbers.

In the **dual weakly-coupled limit** $g_s \propto \hbar^{-1} \to 0$, the perturbative expansion of log $Z(\mathbf{N}, \hbar)$ produces a family of factorially divergent formal power series $\phi_{\mathbf{N}}(g_s)$.

The asymptotic series $\psi_N(g_s) = \exp(\phi_N(g_s))$ are conjectured to give peacock patterns of singularities in their Borel plane, and to infinite sets of **integer Stokes constants**. [Gu, Mariño, 2022] I have applied to the strong coupling limit $g_s \to \infty$ the same **resurgent machine** advocated in [Gu, Mariño, 2022] for the weak coupling limit $g_s \to 0$. In summary,

$$\phi_{\mathbf{N}} = \log \psi_{\mathbf{N}} \iff \mathfrak{B}_{\phi_{\mathbf{N}}} = \{ \Phi_{\sigma,n;\mathbf{N}}(\hbar) \}_{\sigma=0,\dots,l,\,n\in\mathbb{N}} \iff \{ S_{\sigma\sigma',n;\mathbf{N}} \}_{\sigma,\sigma'=0,\dots,l,\,n\in\mathbb{N}}.$$

Analogies with $g_s \rightarrow 0$:

- The Stokes constants of ϕ_N are rational numbers and simply related to non-trivial integer sequences. Their interpretation in terms of **enumerative invariants** of the underlying theory is still missing.
- These Stokes constants are uniquely determined by the original perturbative expansion, and yet they are intrinsically **non-perturbative**.
- Computations in concrete cases resort to the TS/ST correspondence.

Differences with $g_s \rightarrow 0$ *:*

- The Stokes constants of ψ_N are generally complex numbers, not necessarily **integers**.
- The asymptotic series $\psi_{\sigma;N}$ do not have an **exponential pre-factor** of the form $e^{-1/\hbar}$, suggesting that there is no direct analogue of the conifold volume conjecture for toric CYs.

THE EXAMPLE OF LOCAL \mathbb{P}^2

[Rella, 2022]

An introduction to the local \mathbb{P}^2 geometry

The simplest example of a **toric del Pezzo CY threefold** is the total space of the canonical bundle over the projective surface \mathbb{P}^2 , that is,

$$X = \mathcal{O}(-3) \to \mathbb{P}^2,$$

called local \mathbb{P}^2 .

There are one complex modulus κ and no mass parameters.

The first fermionic spectral trace has the **matrix integral representation**

$$Z_{\mathbb{P}^2}(1,\hbar) = \int_{\mathbb{R}} \frac{dy}{2\sqrt{3}\pi b^2} \exp\left(\frac{y}{3} + \log\left(\frac{\Phi_b\left(\frac{y}{2\pi b} + i\frac{b}{3}\right)}{\Phi_b\left(\frac{y}{2\pi b} - i\frac{b}{3}\right)}\right)\right),$$

where $2\pi b^2 = 3\hbar$, and Φ_b is **Faddeev's quantum dilogarithm**. [Kashaev, Mariño, 2015]

The first resurgent structure: a numerical approach — I

Expanding in the limit $b \rightarrow 0$, and integrating order-by-order in b, I compute numerically the **perturbative series** to very high order.

$$\psi(\hbar) = \frac{\Gamma(1/3)^3}{6\pi\hbar} \left(1 - \frac{\hbar^2}{72} + \frac{23\hbar^4}{51840} - \frac{491\hbar^6}{11197440} + O(\hbar^8) \right)$$

Its coefficients show a **factorial growth** with alternating sign. Namely,

$$b_{2n} \sim (-1)^n \frac{(2n)!}{A^{2n}} \quad n \gg 1, \quad A = \frac{4\pi^2}{3}.$$

I perform a full **Padé-Borel analysis** with the additional help of conformal maps. [Costin, Dunne, 2019 - 2020 - 2021]

I find complex conjugate branch points at

$$\zeta = mAi, \quad m \in \mathbb{Z}_{\neq 0}.$$

I consider the standard functional ansatz

$$\psi_1(\hbar) = \hbar^{-b} \sum_{k=0}^{\infty} c_k \hbar^k,$$

and I test the standard large-order asymptotics of the perturbative coefficients

$$n_{2n} \sim \frac{(-1)^n \bar{S}_1}{\pi \mathrm{i}} \frac{\Gamma(2n+b)}{A^{2n+b}} \sum_{k=0}^{\infty} \frac{c_k A^k}{\prod_{j=1}^k (2n+b-j)} \quad n \gg 1 \,.$$

With the help of high-order Richardson transforms, I find that

$$A \approx \frac{4\pi^2}{3}$$
, $b \approx 1$, $\bar{S}_1 = 3\sqrt{3}i$,

while the coefficients satisfy

$$c_{2k} \approx b_{2k}, \quad c_{2k+1} \approx 0, \quad k \in \mathbb{N},$$

and therefore $\psi_1(\hbar) = \psi(\hbar)$.

The first resurgent structure: an analytic approach — I

In the case of local \mathbb{P}^2 , the first fermionic spectral trace is known explicitly as [Kashaev, Mariño, 2015]

$$Z_{\mathbb{P}^2}(1,\hbar\to 0) = \frac{\Gamma(1/3)^3}{6\pi\hbar} \exp\left(3\sum_{n=1}^{\infty} (-1)^{n-1} \frac{B_{2n}B_{2n+1}(2/3)}{2n(2n+1)!} (3\hbar)^{2n}\right).$$

Let $\phi(\hbar)$ be the series in the exponent above.

By application of **Hadamard's multiplication theorem**, I find an explicit formula for the Borel transform $\hat{\phi}(\zeta)$ as an **exact function** of ζ .

This proves that the singularities of $\hat{\phi}(\zeta)$ are **logarithmic branch points** at

$$\zeta = \zeta_m = m \frac{4\pi^2 i}{3}, \quad m \in \mathbb{Z}_{\neq 0}.$$

The Stokes constants S_m are obtained analytically from the **local expansions** of $\hat{\phi}(\zeta)$ as

$$\hat{\phi}(\zeta) = -\frac{S_m}{2\pi i} \log(\zeta - \zeta_m) + \dots \iff \phi_m(\hbar) = 1, \quad m \in \mathbb{Z}_{\neq 0}$$

The Stokes constants have the form

$$S_m = S_1 \frac{\alpha_m}{m}, \quad \alpha_{-m} = -\alpha_m, \quad \alpha_m \in \mathbb{N}_+ \quad m > 0, \quad S_1 = 3\sqrt{3}i.$$

The analytic results are cross-checked numerically.

The exact solution obtained for $\phi(\hbar)$ can be rigorously translated into an exact solution for the original series

 $\psi(\hbar) = \exp(\phi(\hbar))$

by applying the **Stokes automorphism** formulated in terms of **alien derivatives**.

This analytic solution to the resurgent structure of $\psi(\hbar)$ confirms our previous numerical analysis.

The analytic procedure is then straightforwardly applied to the **dual limit** of $\hbar \to \infty$.

The dual limit

Let now $\psi(\hbar) = \exp(\phi(\hbar))$ be the perturbative expansion for $\hbar \to \infty$.

I perform a fully analytic resurgent study as before.

I prove the location and type of the singularities, the local behavior of the Borel transform at the singular points, and the numerical values of the Stokes constants.

I find logarithmic branch points along the imaginary axis at all non-zero integer multiples of $2\pi i/3$.

The local expansions of $\hat{\phi}(\zeta)$ give trivial non-perturbative sectors, and the Stokes constants are

$$R_m = R_1 \frac{\beta_m}{m}, \quad \beta_{-m} = \beta_m, \quad \beta_m \in \mathbb{Z}_{\neq 0} \quad m > 0, \quad R_1 = 3.$$

My results agree with the previous numerical estimates of [Gu, Mariño, 2022].

I find and prove **explicit exact formulae** for the integer numbers α_m , β_m that arise from the Stokes constants S_m , R_m of the asymptotic series $\log Z_{\mathbb{P}^2}(1, \hbar \to 0)$ and $\log Z_{\mathbb{P}^2}(1, \hbar \to \infty)$ as

$$\alpha_m = m \frac{S_m}{S_1} \in \mathbb{Z}_{\neq 0}, \quad \beta_m = m \frac{R_m}{R_1} \in \mathbb{Z}_{\neq 0}, \quad m \in \mathbb{Z}_{\neq 0}.$$

Semiclassical limit $\hbar \rightarrow 0$ *:*

Weakly-coupled limit $g_s \rightarrow 0$ *:*

$$\sum_{m>0} \alpha_m x^m = \sum_{k>0} \frac{kx^k}{1 + x^k + x^{2k}} \qquad \qquad \sum_{m>0} \beta_m x^m = \sum_{k>0} \frac{x^k (1 - x^{2k})}{(1 + x^k + x^{2k})^2}$$
$$\alpha_m = \frac{p_1^{i_1+1} - 1}{p_1 - 1} \cdot \frac{p_2^{i_2+1} + (-1)^{i_2}}{p_2 + 1} \cdot p_3^{i_3} \qquad \qquad \beta_m = \frac{p_1^{i_1+1} - 1}{p_1 - 1} \cdot \frac{(-1)^{i_2} p_2^{i_2+1} + 1}{p_2 + 1}$$

where $m = p_1^{i_1} \cdot p_2^{i_2} \cdot p_3^{i_3}$, and $p_i \equiv i \mod 3$, for i = 1, 2, 3.

I find and prove **explicit generating functions in the form of** *q***-series** for the Stokes constants S_m , R_m of the asymptotic series $\log Z_{\mathbb{P}^2}(1, \hbar \to 0)$ and $\log Z_{\mathbb{P}^2}(1, \hbar \to \infty)$.

In the semiclassical limit $\hbar \rightarrow 0$:

$$\sum_{m>0} S_m \tilde{q}^m = -i\pi - 3\left(\log(w; \tilde{q})_\infty - \log(w^{-1}; \tilde{q})_\infty\right) ,$$

where $w = e^{2\pi i/3}$ and $\tilde{q} = e^{-2\pi i/b^2} = e^{-4\pi^2 i/3\hbar}$.

In the weakly-coupled limit $g_s \rightarrow 0$:

$$\sum_{m>0} R_m q^m = 3 \left(\log(q^{2/3}; q)_\infty - \log(q^{1/3}; q)_\infty \right) ,$$

where $q = e^{2\pi i b^2} = e^{3i\hbar}$.

Note that $g(q) = \frac{(q^{2/3}; q)_{\infty}^2}{(q^{1/3}; q)_{\infty}}$ and $G(\tilde{q}) = \frac{(w; \tilde{q})_{\infty}}{(w^{-1}; \tilde{q})_{\infty}^2}$ are the **holomorphic and anti-holomorphic blocks** that appear in the factorization of $Z_{\mathbb{P}^2}(1, \hbar)$.

I find and prove explicit exact formulae in terms of the Riemann zeta functions for the Stokes constants S_m , R_m of the asymptotic series $\log Z_{\mathbb{P}^2}(1, \hbar \to 0)$ and $\log Z_{\mathbb{P}^2}(1, \hbar \to \infty)$.

In the semiclassical limit $\hbar \rightarrow 0$:

$$\sum_{m>0} \frac{S_m}{m^{2k}} = 3\sqrt{3}i \cdot 3^{-1-2k} \cdot \zeta(2k) \cdot \left(\zeta(2k+1,1/3) - \zeta(2k+1,2/3)\right) \,.$$

In the weakly-coupled limit $g_s \rightarrow 0$:

$$\sum_{m>0} \frac{R_m}{m^{2k-1}} = 3\mathbf{i} \cdot 3^{1-2k} \cdot \zeta(2k) \cdot \left(\zeta(2k-1,1/3) - \zeta(2k-1,2/3)\right) \,.$$

These formulae can be regarded as exact expressions for the perturbative coefficients, i.e.,

$$b_{2k} = \frac{(-1)^k}{\pi} \frac{\Gamma(2k)}{A^{2k}} \sum_{m>0} \frac{S_m}{m^{2k}} \quad (\hbar \to 0) \,, \quad b_{2k} = \frac{(-1)^k}{\pi} \frac{\Gamma(2k-1)}{A^{2k-1}} \sum_{m>0} \frac{R_m}{m^{2k-1}} \quad (g_s \to 0) \,.$$

CONCLUSIONS

I described how resurgence can be effectively applied to perturbative expansions arising in the semiclassical regime $\hbar \to 0$ of the spectral theory dual to the topological string theory on a CY threefold.

The resurgent analysis of these expansions unveils a structure of invisible non-perturbative sectors, and associates to them sets of rational Stokes constants.

Building on the work of [Gu, Mariño, 2022], I conjectured in the general case, and proved analytically in the example of local \mathbb{P}^2 , that peacock patterns occur, and that the Stokes constants have an explicit arithmetic meaning.

The analytic solution for local \mathbb{P}^2 in both limits $\hbar \to 0$ and $\hbar \to \infty$ makes symmetries and differences of the two regimes manifest, and hints at an interesting connection to analytic number theory.

A preliminary numerical resurgent analysis of local \mathbb{F}_0 in the semiclassical limit is presented in [Rella, 2022].

An important goal for future work is the geometric and physical understanding the nonperturbative sectors unveiled by [Gu, Mariño, 2022 - Rella, 2022], and the identification of our Stokes constants as enumerative invariants of topological strings.

THANK YOU