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MOTIVATIONS AND BACKGROUND



Enumerative invariants and resurgence

Asymptotic, resurgent series arise naturally as perturbative expansions in quantum theories.

The machinery of resurgence uniquely associates to them a collection of complex numbers,
known as Stokes constants, which capture information about the non-perturbative sectors of
the theory.

In some remarkable cases, the Stokes constants can be interpreted in terms of enumerative
invariants based on the counting of BPS states.
Some recent developments:

e 4d N = 2 supersymmetric gauge theory in the Nekrasov-Shatashvili limit of the Omega-

background
[Grassi, Gu, Marino, 2020]

e Complex Chern-Simons theory on the complement of a hyperbolic knot
[ Garoufalidis, Gu, Mariiio, 2020 - 2022]

e Standard topological string theory on a Calabi-Yau threefold in the weakly-coupled regime
[Gu, Marifio, 2022]



FROM TOPOLOGICAL STRINGS TO QUANTUM
OPERATORS AND BACK



From topological strings to quantum operators

Let X be a toric Calabi-Yau (CY) threefold.

Local mirror symmetry pairs X with an algebraic curve X of genus gy, whose quantization
leads to quantum-mechanical operators

,0]', j=19°°'9g27

acting on L*(R), and conjectured to be positive-definite and of trace class, under some

assumptions on the mass parameters ¢&.
[Grassi, Hatsuda, Marino, 2016 - Codesido, Grassi, Marino, 2017]

Their Fredholm determinant =(k, £, /1) is an entire function of the true complex moduli x,
and its local expansion at the orbifold point k; = 0, that is,

N,

2(k, & h) = Z Z Z(N, &, h)Kivl...K-gzgz,

N0 N, >0
defines the fermionic spectral traces Z(N, &, /1), which are analytic functions of 2 € R,

We will assume that Z(N, &, 71) can be analytically continued to 7 € C\R_,



From quantum operators to topological strings

The Topological Strings/Spectral Theory (TS/ST) correspondence gives

loo loo
Z(N, ¢, h) = dm'"J - dpg exp(J(u, &, 1) =N - p),

(2mi)sz [ i

—1o0

where the chemical potentials y; are defined by k; = et
[Hatsuda, Moriyama, Okuyama, 2013 - Grassi, Hatsuda, Marifio, 2016 - Codesido, Grassi, Marifio, 2017]

The total grand potential J(u, &, 71) can be written as

J(u, &) = TV, & 1) + TVEP(u, &, ),

where the worldsheet instanton grand potential J> and the WKB grand potential J VKB
capture the contributions from the standard and the Nekrasov-Shatashvili (NS) topological
strings, respectively.

[Hatsuda, Marifio, Moriyama, Okuyama, 2014]

The standard topological string coupling constant g, is related to the quantum deformation
parameter /1 by g, = 47%/h (strong-weak coupling duality).



NOTIONS FROM THE THEORY OF
RESURGENCE



Resurgence 1n quantum theories — I

Let ¢(z) be a resurgent Gevrey-1 asymptotic series of the form

oo

P(z) = Zanzn e Cllzll, a,~A™"n! n>1.
n=0

Its Borel resummation is the two-step process

P(2) ~ &) = ;}%C" ~ sy(P)(2) = L e~ P(C2) de,

where p, = ei9R+, 0 = arg({).

The Borel resummation s,(¢)(z) is a locally analytic function in the complex z-plane with
discontinuities at

arg(z) = arg(C,) ,

where w labels the singularities £, € C of qﬁ(C ).

A ray containing one or more singularities of qﬁ(C ) is called a Stokes ray.



Resurgence 1n quantum theories — II

The discontinuity of the Borel resummation across the Stokes ray p, 1s given by

discop(2) = 5, (D) — 5. (B = Y S, e 5 (,)(2).

where 0, = 0 £ ¢ for some small positive angle €, and the sum is performed over all the
singularities ¢, of ¢»({') which lie on p,.

The Stokes constant S, € C and the resurgent Gevrey-1 asymptotic series ¢ (z) are
encoded in the local expansion of the Borel transform at the singularity { = ¢ _.If £ is a
logarithmic branch point, we have

~ Sa) ~ '09+ Po
P() = —-—log(C = {,)P,(C—C,) + ...,
2ri
where the dots denote regular terms in E=(0-C,,
and ¢ (&) is the Borel transform of ¢ (z). Cw Po_

The Stokes automorphism &, across py is ey
defined by Se+ — S@_ ° @9

\J




Resurgence 1n quantum theories — III

We can repeat the procedure with each of the series obtained in this way. Schematically,

¢ e {¢a)7Sa)} > {¢a)’asa)a)’}-

Each resurgent series in this process can be promoted to basic trans-series as

D (2)=e ¢ (2).

The minimal resurgent structure associated to ¢(z) is
defined as the smallest subset of its basic trans-series l
which forms a closed system under Stokes automorphisms.
We denote it by

B, = {‘Dw(Z)}weg . A ‘ ‘ ‘

Evidence suggests that a peacock pattern of singularities
in the complex Borel plane is typical of theories controlled ]
by a quantum curve in exponentiated variables.




TOPOLOGICAL STRINGS BEYOND
PERTURBATION THEORY

[Rella, 2022]



Stokes constants and peacock patterns 1n topological string theory — I

In the semiclassical limit 2 — 0, the perturbative expansion of log Z(N, ) produces a
family of asymptotic series ¢n(71), indexed by N € Néz, which I assume to be Gevrey-1 and
resurgent. I denote

wn(h) = exp(pn(n)) .

A periodic peacock configuration of Stokes rays is expected to occur in the complex Borel
plane of the perturbative series ¢n(71) for fixed N.

More precisely, there is a finite number of Gevrey-1 asymptotic series

PN, o€{0,...,1}, !
which resurge from ¢n(7) = Pon(7).
For each o, there 1s an infinite family of basic trans-series .

O, ") =g N e, neN,

where A € C and [ € N, depend on N and on the CY geometry.



Stokes constants and peacock patterns 1n topological string theory — 11

The basic trans-series @ ,.(7) capture explicit non-analytic corrections in 7, which
describe additional, hidden sectors of the topological string.

They lead to a minimal resurgent structure of the form

%4)1\1 - {(I)G,n;N(h)}a=O,...,l, nen s

and to infinitely-many Stokes constants
SesnNs 0,0 =0,..,1, neEN,

which I conjecture to be rational numbers.

In the dual weakly-coupled limit g A~ — 0, the perturbative expansion of log Z(N, )
produces a family of factorially divergent formal power series ¢n(g,)-

The asymptotic series yn(g,) = exp(¢n(g,)) are conjectured to give peacock patterns of

singularities in their Borel plane, and to infinite sets of integer Stokes constants.
[Gu, Marifio, 2022]



Strong and weak coupling limits

I have applied to the strong coupling limit g, — oo the same resurgent machine advocated
in [Gu, Marifio, 2022] for the weak coupling limit g, — 0. In summary,

¢N — lOg YN ™7 1)ngN — {q)a,n;N(h)}azQ...,l, neN {Saa’,n;N}a,a’zo,...,l, neN -

Analogies with g, — 0:

o The Stokes constants of ¢y are rational numbers and simply related to non-trivial integer
sequences. Their interpretation in terms of enumerative invariants of the underlying
theory 1s still missing.

e These Stokes constants are uniquely determined by the original perturbative expansion, and
yet they are intrinsically non-perturbative.

e Computations in concrete cases resort to the TS/ST correspondence.

Differences with g, — 0:

e The Stokes constants of yy are generally complex numbers, not necessarily integers.

o The asymptotic series y/.y do not have an exponential pre-factor of the form e~/

suggesting that there is no direct analogue of the conifold volume conjecture for toric CYs.



THE EXAMPLE OF LOCAL

[Rella, 2022]
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An introduction to the local P? geometry

The simplest example of a toric del Pezzo CY threefold is the
total space of the canonical bundle over the projective
surface P2, that is,

X = 06(-3) - P2,

called local [P2.

There are one complex modulus k and no mass parameters.

The first fermionic spectral trace has the matrix integral representation

( ( \ )
Yy o .b
dy y ®, (55 +i%)
Zpo(1,0) = exp | = + log :
R 24/37b2 3 D, <L _ iﬁ)

where 27b* = 3h, and @, is Faddeev's quantum dilogarithm.
[Kashaev, Marifio, 2015]



The first resurgent structure: a numerical approach — I

Expanding in the limit b — 0, and integrating order-by-order in b, I compute numerically
the perturbative series to very high order.

I'(1/3)? nr  23n° 491h°
w(h) = ( )<1— + +O(h8))

67h 72 ' 51840 11197440

Its coefficients show a factorial growth with
alternating sign. Namely,

(2n)! 472
n>1, A=——.
A2n 3

by, ~ (—=1)"

I perform a full Padé-Borel analysis with the

additional help of conformal maps.
[Costin, Dunne, 2019 - 2020 - 2021]

I find complex conjugate branch points at

C=mAi, me .




The first resurgent structure: a numerical approach — II

I consider the standard functional ansatz
0
OESW
k=0
and I test the standard large-order asymptotics of the perturbative coefficients

n>1.

(—=1)"S, T'(2n + b) i c, AX

n
2n i A2n+b

k .
=0 11_, 2n+b—j)
With the help of high-order Richardson transforms, I find that

Ax—, br1l, § =34/3i,

while the coefficients satisty
Cox ¥ by iy ~0, kEN,

and therefore y;(7) = w(h).



The first resurgent structure: an analytic approach — I

In the case of local [P, the first fermionic spectral trace is known explicitly as
[Kashaev, Mariiio, 2015]

I'(1/3)° = B,,B,,+1(2/3)
Z A1k = 0) = exp 33 (= 1y-12272n 32 |
pll. = 0)=—— p( Z;(  San o OM

Let ¢o(7) be the series in the exponent above.

By application of Hadamard’s multiplication theorem, I find an explicit formula for the
Borel transform ¢({) as an exact function of (.

This proves that the singularities of q§(§ ) are logarithmic branch points at

4%
{=C(, =m 3 me Z,.

The Stokes constants S, are obtained analytically from the local expansions of qg((: ) as

) S
¢(C>=—2—m.10g(5—ém)+--- w P )=1, meZy.
1



The first resurgent structure: an analytic approach — II

The Stokes constants have the form

o
S, =S—, a,=-a,, a,€N, m>0, Sl=3\/§i. 74
m ‘s
The analytic results are cross-checked numerically. .3
The exact solution obtained for ¢»(72) can be rigorously o1
translated into an exact solution for the original series .
]
w(h) = exp(p(h)) -
by applying the Stokes automorphism formulated —1e
in terms of alien derivatives. |
— 10
This analytic solution to the resurgent structure of (%) “3e
confirms our previous numerical analysis.
—3e
. . . . —4 o
The analytic procedure is then straightforwardly applied
to the dual limit of 7 — .



The dual limit

Let now y(71) = exp(¢p(n)) be the perturbative expansion for 7 — 0.

A
[ perform a fully analytic resurgent study as before. —4 e
*3
I prove the location and type of the singularities, the local behavior of .1
the Borel transform at the singular points, and the numerical values of
the Stokes constants. “1e
o]
I find logarithmic branch points along the imaginary axis at all
non-zero integer multiples of 271/3. -
. A . . . 1
The local expansions of ¢({) give trivial non-perturbative sectors, !
and the Stokes constants are “le
B, ol
R,=R—, p_,=Pn, Pn€ZLy m>0, R =3.
m o3
. . . . —4e
My results agree with the previous numerical estimates
of [Gu, Marifio, 2022].



Exact formulae for the Stokes constants — I

I find and prove explicit exact formulae for the integer numbers a,,, f,, that arise from the
Stokes constants S, , R, of the asymptotic series log Zp.(1, 7 — 0) and log Zp.(1, 7 — o0) as

1

Semiclassical limit h — O:

m m

d=51 d=,2

kxck
m __
Zamx N Z 1 + xk 4 x2k
m>0 k>0

Mo e
pr—1 prt+1

A

P

I

1

Weakly-coupled limit g, — 0:

ﬂm: Zd_ Zd
d|m d|m
d=,1 d=,2

. 51 = x%
Z’Bmx - Z (1 +xk+x2k)2

m>(0 k>0

p{'1+1 —1 (_1)i2p£2+1 +1
pr—1 prt+1

Pon

where m = pfl -pzi2 -p3i3, and p, =1 mod 3, fori = 1,2,3.



Exact formulae for the Stokes constants — 11

I find and prove explicit generating functions in the form of g-series for the Stokes
constants S, , R of the asymptotic series log Zp»(1, 2 — 0) and log Zp2(1, 7 — o0).

In the semiclassical limit h — 0O:

Z Sd™ = —ir — 3 (log(w; @) — logw™h; §)o) -

m>0

27173 —271/b? —4721/3h

where w = e andg = e =e

In the weakly-coupled limit g, — O:

) R,q" =3 (log(q™; q)s —10g(q": 9),) -
m>0
where g = e2mb? — 31
2/3. N2 ~
; 0 ~ w; 0 ° °
Note that g(g) = G 9) and G(g) = (v 9) are the holomorphic and anti-
1/3 1 )2
(7" P W™ D%

holomorphic blocks that appear in the factorization of Zp.(1, 7).



Exact formulae for the Stokes constants — III

I find and prove explicit exact formulae in terms of the Riemann zeta functions for the
Stokes constants S,,, R, of the asymptotic series log Zp(1, 7 — 0) and log Zp.(1, i = o).

In the semiclassical limit h — 0O:

S .
Z — =34/3i- 37172 02k - (82K + 1,1/3) — 2k + 1,2/3)) .

2k
m
m>0

In the weakly-coupled limit g, — O:

Ry . A1-2k
> e =313 2k ($2k —1,1/3) — {2k — 1,2/3)) .

m>0

These formulae can be regarded as exact expressions for the perturbative coefficients, 1.c.,

(—1)* T(2k) y S, (=1 T2k — 1) 3 R,

— (W= 0), by =
A2k m2k ( )> b A2k—1 m2k—1
m>0 m>0

by = (g — 0).



CONCLUSIONS



A brief summary and some comments

I described how resurgence can be effectively applied to perturbative expansions arising in

the semiclassical regime 72 — 0 of the spectral theory dual to the topological string theory on
a CY threefold.

The resurgent analysis of these expansions unveils a structure of invisible non-perturbative
sectors, and associates to them sets of rational Stokes constants.

Building on the work of [Gu, Marifio, 2022], I conjectured in the general case, and proved
analytically in the example of local P2, that peacock patterns occur, and that the Stokes
constants have an explicit arithmetic meaning.

The analytic solution for local [P? in both limits # — 0 and # — co makes symmetries and
differences of the two regimes manifest, and hints at an interesting connection to analytic
number theory.

A preliminary numerical resurgent analysis of local [, in the semiclassical limit 1s presented
1N [Rella, 2022].

An important goal for future work 1s the geometric and physical understanding the non-
perturbative sectors unveiled by [Gu, Marifio, 2022 - Rella, 2022], and the 1dentification of our
Stokes constants as enumerative invariants of topological strings.
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