Motivic Amplitudes

Conference on Representation Theory and Integrable Systems ETH, Zurich, Switzerland 13 August 2019

Claudia Rella University of Oxford

Based on arXiv:2009.00426

Scalar Feynman Graphs

Let G be a scalar Feynman graph with n_G internal edges, l_G independent loops, $\{p_i\}$ momenta of external legs, $\{m_e\}$ masses of internal edges.

In 4D spacetime, the parametric Feynman integral of G is equivalent to the projective integral

$$I_{G}(\{p_{j}, m_{e}\}) = \int_{\sigma} \frac{\Omega}{\Psi_{G}^{2}} \left(\frac{\Psi_{G}}{\Xi_{G}(\{p_{j}, m_{e}\})} \right)^{n_{G}-2l_{G}}$$

where
$$\sigma = \{ [x_1 : \ldots : x_{n_G}] \in \mathbb{P}^{n_G - 1}(\mathbb{R}) \mid x_e \ge 0, e = 1, \ldots, n_G \}$$

and
$$\Omega = \sum_{e=1}^{n_G} (-1)^e x_e dx_1 \wedge \ldots \wedge \widehat{dx_e} \wedge \ldots \wedge dx_{n_G}.$$

Primitive Log-Divergent Graphs

G is called **logarithmically divergent** if it satisfies $n_G = 2l_G$.

The Feynman integral simplifies to
$$I_G = \int_{\sigma} \frac{\Omega}{\Psi_G^2}$$
.

Theorem. Let G be a logarithmically divergent graph. The integral I_G converges if and only if every proper subgraph $\emptyset \neq \gamma \subsetneq G$ satisfies $n_{\gamma} > 2l_{\gamma}$.

If every $\emptyset \neq \gamma \subsetneq G$ satisfies $n_{\gamma} > 2l_{\gamma}$, G is called **primitive log-divergent**.

Particular attention is given to primitive log-divergent graphs in scalar ϕ^4 quantum field theory.

Numeric Periods

Definition (Kontsevich, Zagier). A numeric period is a complex number whose real and imaginary parts are values of absolutely convergent integrals of the form

$$\int_{\sigma} f(x_1, \dots, x_n) \ dx_1 \dots dx_n$$

where f is a rational function with rational coefficients and $\sigma \subseteq \mathbb{R}^n$ is defined by finite unions and intersections of domains of the form $\{g(x_1, \ldots, x_n) \geq 0\}$ with g a rational function with rational coefficients.

$$\bar{\mathbb{Q}} \subset \mathscr{P} \subset \mathbb{C}$$

Examples.

- Algebraic numbers, logarithms of algebraic numbers, π
- Elliptic integrals, multiple zeta values
- Special values of hypergeometric functions and modular forms
- Values of various kinds of L-functions
- Feynman integrals

Numeric Periods

Definition. Let X be a smooth quasi-projective variety over \mathbb{Q} , $Y \subset X$ a subvariety, ω a close algebraic differential n-form on X vanishing on Y, and γ a singular n-chain on the complex manifold $X(\mathbb{C})$ with boundary in $Y(\mathbb{C})$. The integral $\int_{\gamma} \omega \in \mathbb{C}$ is a numeric period.

A period can be associated to **different integral representations**. The first step towards a unique algebraic identification is

$$\omega \longmapsto [\omega] \in H^n_{alg-dR}(X,Y)$$

$$\gamma \longmapsto [\gamma] \in H_n^B(X,Y)$$

Hodge Structures

Theorem (Grothendieck). Let X be a smooth affine variety over \mathbb{Q} . Then the map

comp:
$$H^n_{alg-dR}(X) \otimes_{\mathbb{Q}} \mathbb{C} \longrightarrow H^n_B(X) \otimes_{\mathbb{Q}} \mathbb{C}$$

is an isomorphism, called comparison isomorphism.

The comparison isomorphism is induced by the pairing

$$H_{alg-dR}^{n}(X,\mathbb{Q}) \otimes H_{n}^{sing}(X(\mathbb{C}),\mathbb{Q}) \longrightarrow \mathbb{C}$$

$$[\omega] \otimes [\gamma] \longmapsto \int_{\gamma} \omega$$

The **Hodge structure** $H^n(X) = (H^n_{alg-dR}(X), H^n_B(X), \text{ comp})$ selects the content shared by the different cohomologies of X.

Motivic Periods

Analogously, the **motivic representation** of a period singles out its cohomological content

$$\int_{\gamma} \omega \longmapsto [H^n(X,Y),[\omega],[\gamma]]^{\mathbf{m}}$$

After factorisation modulo bilinearity, change of variables and Stokes formula, the set of motivic representations of periods identifies the **algebra of motivic periods** \mathcal{P}^{m} .

The evaluation homomorphism $\mathcal{P}^{\mathbf{m}} \to \mathcal{P}$, called **period map**, is an isomorphism only conjecturally.

Examples

Example of $2\pi i$:

$$(2\pi i)^{\mathbf{m}} = \left[H^{1}(\mathbb{G}_{m}), \left[\frac{dx}{x}\right], [\gamma_{0}]\right]^{\mathbf{m}} \longmapsto 2\pi i = \oint_{\gamma_{0}} \frac{dx}{x}$$

where γ_0 is any counterclockwise cycle encircling the origin in \mathbb{C} .

Example of $\log(z), z \in \overline{\mathbb{Q}} \setminus \{1\}$:

$$\log(z)^{\mathbf{m}} = \left[H^{1}(\mathbb{G}_{m}, \{1, z\}), \left[\frac{dx}{x} \right], [\gamma_{1}] \right]^{\mathbf{m}} \longmapsto \log(z) = \int_{1}^{z} \frac{dx}{x}$$

where γ_1 is the directed segment from 1 to z.

Motivic Feynman Integrals

$$\mathcal{P}_{log} = \mathbb{Q} \langle I_G \mid G \text{ is primitive log-divergent } \rangle$$

 $\mathcal{P}_{\phi^4} = \mathbb{Q}\langle I_G \mid G \text{ is primitive log-divergent in } \phi^4 \rangle$

$$\mathscr{P}_{\phi^4} \subseteq \mathscr{P}_{log} \subseteq \mathscr{P}$$

Promoting $I_G \in \mathcal{P}_{log}$ to its motivic version $I_G^{\mathbf{m}} \in \mathcal{P}_{log}^{\mathbf{m}}$, the presence of singularities requires special treatment via the **blow up** technique.

When applicable, it produces a well-defined motivic representation

$$I_G^{\mathbf{m}} = [H^{n_G-1}(P^G \setminus Y_G), D \setminus (D \cap Y_G), [\hat{\omega}], [\hat{\sigma}]]^{\mathbf{m}}$$

Tannakian Formalism

Definition. A **Tannakian category** over the field \mathbb{K} is a rigid abelian \mathbb{K} -linear tensor category \mathcal{T} such that $\operatorname{End}(1) = \mathbb{K}$ and there exists an exact faithful \mathbb{K} -linear tensor functor $\omega : \mathcal{T} \to \operatorname{Vec}_{\mathbb{K}}$, called **fibre functor**.

Let R be a \mathbb{K} -algebra.

Denote $\omega_1, \omega_2 : \mathcal{T} \to \text{Vec}_{\mathbb{K}}$ two fibre functors of \mathcal{T} .

$$\underline{\operatorname{Isom}}^{\otimes}(\omega_1, \omega_2)(R) = \left\{ \begin{array}{l} \lambda_M : \omega_1(M) \otimes_{\mathbb{K}} R \to \omega_2(M) \otimes_{\mathbb{K}} R, \\ \forall M \in \operatorname{Ob}(\mathcal{T}), \text{ such that } \lambda_M \\ \text{is an isomorphism compatible} \\ \text{with } \otimes -\text{product and functorial} \end{array} \right\}$$

The functor $R \mapsto \underline{\text{Isom}}^{\otimes}(\omega_1, \omega_2)(R)$, denoted $\underline{\text{Isom}}^{\otimes}(\omega_1, \omega_2)$, is representable by an affine scheme over \mathbb{K} .

Tannakian Formalism

When $\omega_1 = \omega_2 = \omega$, $\underline{\text{Isom}}^{\otimes}(\omega, \omega)(R)$ is written as $\underline{\text{Aut}}^{\otimes}(\omega)(R)$.

The functor $R \mapsto \underline{\mathrm{Aut}}^{\otimes}(\omega)(R)$ is representable by an affine group scheme over \mathbb{K} and is denoted $\underline{\mathrm{Aut}}^{\otimes}(\omega) = G^{\omega}$. This is the **Tannaka group** of the pair (\mathcal{T}, ω) .

Theorem. Let \mathcal{T} be a Tannakian category over \mathbb{K} and let ω be one of its fibre functors. The functor $\mathcal{T} \longrightarrow \operatorname{Rep}_{\mathbb{K}}(G^{\omega})$ sending X to the vector space $\omega(X)$ with the natural action of G^{ω} on $\omega(X)$, $\forall X \in \operatorname{Ob}(\mathcal{T})$, is an equivalence of categories.

Tannakian categories are indeed the categories of finite-dimensional linear representations of a pro-algebraic group.

Category of Motives

The category of Hodge structures \mathcal{M} is a Tannakian category over \mathbb{Q} with fibre functors $\omega_{dR}, \omega_{R} : \mathcal{M} \to \mathrm{Vec}_{\mathbb{Q}}$.

Denote $G^{dR} = \underline{\operatorname{Aut}}^{\otimes}(\omega_{dR})$. This is called **motivic Galois group**.

The category of motives is isomorphic to the category of finite-dimensional Q-linear representations of the motivic Galois group

$$\mathcal{M} \simeq \operatorname{Rep}_{\mathbb{Q}}(G^{dR})$$

The same category is built from the motivic Galois group in the Betti realisation $G^B = \underline{\operatorname{Aut}}^{\otimes}(\omega_B)$.

Category of Motives

The space of motivic periods is re-expressed as

$$\mathcal{P}^{\mathrm{m}} = \mathbb{Q} \langle \, [M, \omega, \sigma] \, | \, M \in \mathrm{Ob}(\mathcal{M}), \, \omega \in \omega_{dR}(M), \, \sigma \in \omega_{B}(M)^{\vee} \, \rangle$$

with implicit factorisation modulo bilinearity and functoriality.

Theorem. $\mathscr{P}^{\mathbf{m}}$ is isomorphic to the space of regular functions on the \mathbb{Q} -scheme $\underline{\mathrm{Isom}}^{\otimes}(\omega_{dR}, \omega_{B})$, that is

$$\mathscr{P}^{\mathrm{m}} \simeq \mathscr{O}(\underline{\mathrm{Isom}}^{\otimes}(\omega_{dR}, \omega_{B}))$$

Periods arise as a consequence of the coexistence and peculiar compatibility of the two different cohomological structures.

Galois Coaction

The motivic Galois group has a natural **action** on Isom $\otimes (\omega_{dR}, \omega_B)$

$$\nabla: G^{dR} \otimes \underline{\operatorname{Isom}}^{\otimes}(\omega_{dR}, \omega_{B}) \longrightarrow \underline{\operatorname{Isom}}^{\otimes}(\omega_{dR}, \omega_{B})$$

which induces a **coaction** on $\mathcal{O}(\underline{\mathrm{Isom}}^{\otimes}(\omega_{dR}, \omega_B)) = \mathcal{P}^{\mathrm{m}}$

$$\Delta: \qquad \mathscr{P}^{\mathbf{m}} \longrightarrow \mathscr{O}(G^{dR}) \otimes \mathscr{P}^{\mathbf{m}}$$
$$[M, \omega, \sigma]^{\mathbf{m}} \longmapsto \sum_{i=1}^{n} [M, \omega, e_{i}^{\vee}]^{dR} \otimes [M, e_{i}, \sigma]^{\mathbf{m}}$$

where $\{e_i\}$ is a basis of $\omega_{dR}(M)$ and e_i^{\vee} is the dual basis.

Denote
$$\mathcal{P}^{dR} = \mathcal{O}(G^{dR})$$
.

Example

Consider $log(z)^{m}$. The coaction gives

$$\Delta \left[M, \left[\frac{dx}{x} \right], [\gamma_1] \right]^{\mathrm{m}} = \left[M, \left[\frac{dx}{x} \right], \left[\frac{dx}{z - 1} \right]^{\vee} \right]^{dR} \otimes \left[M, \left[\frac{dx}{z - 1} \right], [\gamma_1] \right]^{\mathrm{m}} + \left[M, \left[\frac{dx}{x} \right], \left[\frac{dx}{x} \right]^{\vee} \right]^{dR} \otimes \left[M, \left[\frac{dx}{x} \right], [\gamma_1] \right]^{\mathrm{m}}$$

where $M = H^1(\mathbb{G}_m, \{1, z\})$. That is

$$\Delta \log(z)^{\mathbf{m}} = \log(z)^{dR} \otimes 1^{\mathbf{m}} + (2\pi i)^{dR} \otimes \log(z)^{\mathbf{m}}$$

 1^{m} and $\log(z)^{m}$ are the **Galois conjugates** of $\log(z)^{m}$.

Coaction Conjecture in ϕ^4 Theory

Consider the Galois coaction restricted to $\mathscr{P}_{\phi^4}^{\mathbf{m}}$.

A priori, it has values in the whole space $\mathcal{P}^{dR} \otimes \mathcal{P}^{m}$, that is

$$\Delta: \mathscr{P}^{\mathbf{m}}_{\phi^4} \longrightarrow \mathscr{P}^{dR} \otimes \mathscr{P}^{\mathbf{m}}$$

Conjecture (Panzer, Schnetz). Galois conjugates of ϕ^4 -periods are still ϕ^4 -periods, that is

$$\Delta(\mathscr{P}_{\phi^4}^{\mathbf{m}}) \subseteq \mathscr{P}^{dR} \otimes \mathscr{P}_{\phi^4}^{\mathbf{m}}$$

The conjecture states the existence of a particular symmetry underlying the specific set of ϕ^4 -periods.

References

- Kontsevich M. and Zagier D., *Periods*, Math. Unlimited 2001 and Beyond, Springer, pages 771-808, 2001.
- Brown F., Feynman Amplitudes, Action Principle, and Cosmic Galois Group, Communications in Number Theory and Physics, 3-11, pages 453-556, 2017.
- Brown F., *Notes on Motivic Periods*, Communications in Number Theory and Physics, 3-11, pages 557-655, 2017.
- Panzer E. and Schnetz O., *The Galois Coaction on* ϕ^4 *Periods*, Communications in Number Theory and Physics, 3-11, pages 657-705, 2017.